PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998

Networking process and fractal dimensionality in percolation
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The growth mechanism is studied for percolation networks on a square lattice by means of a Monte Carlo
technique. The mechanism near the threshmidp,. is accompanied with the extensive linking of clusters
during the random-increment process of occupied sites on the lattice. Local dimensionality is defined from the
magnification rates of linking clusters. The linking mechanism characterizes the process for fractal growth in
percolation[S1063-651X98)00607-2

PACS numbds): 05.70.Fh, 64.60.Ak

Since the concept of “fractal” was established, geometri-seeds. Abscissa is for probabilityand ordinate for siz&ay
cal features in nature have been described wiffifitin the  of the largest cluster. Here the si$g,,, was normalized by
study of fractals, computer simulations have presented f=|2. Line ain Fig. 1 is forL =50, b forL =100, and ¢ for
number of realistic models of structuri?d. Percolation clus- | =400. Line a is almost constant wis,,=0 in the initial
ters simulated with the Monte Carld/C) technique have regionp<0.4. This shows that the cluster does not grow in
been known to be one of the typical models of the structurgnjs region, although the number of occupied sites has been
with fractal geometry[3]. The dimensionalities on two- jncreased in proportion tp. The line begins to increase
dimensional2D) lattices have beeB = 35=1.896 for clus-  apruptly at aboup=0.5 and continues to increase unil
ters at the thresholg=p. andD=1.56 for clusters in the =0 7, indicating the drastic growth of the cluster. The line
noncritical regionp<<p; [3]. _ ~ shows linear relation for the final regigm>0.7. Lines for

In order to analyze the detailed structure of percolationnhe other sized. vary in the same manner as line a. The
clusters, Stanley and Coniglio proposed the “link-node-gnset probability of the drastic increment increases with in-
blob” model [4,5]: links are defined as one-dimensional creasingL.
chains, nodes as their crossing points, and blobs as connec-\ye examine the growth process of the cluster in more
tion chains with two or more junctions between two points. yetail. Figure 1 shows the variations of average Sizg, for
Bonds in the clusters have been classified into three partgfifferent samples. In order to know details of the growth
“red” is a singly joined backbone bond, "blue” a multiply  hrocess of the cluster, we examined the variations of the size
joined one, and “yellow” a dangling eng6]. This model  f the cluster without averaging. First we determined a
has been widely used to study fine structure of the clusters;ngom-number seed for a sample and increased occupied

The purpose of this paper is to present an interpretatiogjtes at random one by one in the sample: the sites were
for the origin of the above dimensionalities. We ex_amine thegetermined by random-number series with the seed. Figure 2
growth process of the clusters on a squée) lattice by  ghows the result for a sample with a random-number seed.
means of the MC simulation. The interlinking site betweentp,q system size was chosen to be=100. Line for the
two clusters, which means the “red” bond, plays an essengample varies stepwise in this figure. Smooth curve in it
tial role in understanding the formation mechanism of fractal
networks with the dimensionalities.

First an array of vacant sites was constructed on the lattice 10 ' ' ' '
points of the SQ lattice in 2D. Their total numbsrof the
sites isN=LXL, whereL is the spanning size which is 08 - T
equal to the number of sites on a side of the lattice. On the
array of the vacant sites, occupied sites were introduced in 0.6 i
the system at random. The numiéy of the occupied sites .
was defined adl,=NXp, wherep is the occupation prob- UE, 04 L 1
ability of the sites. From the occupied sites determined at ’
random, the structure of the clusters was analyzed. Here the b
cluster was identified as a group of the occupied sites con- 02| .
nected by nearest-neighbor bonds. This process corresponds a c
to “site percolation.” 0.0 . . !

Here let us examine the growth mechanism of percolation 0.0 0.2 0.4 o 0.6 0.8 1.0

clusters on the SQ lattice. First we obtained size variations of
the largest cluster constructed in the system. The size of the |G, 1. variations of average size of the largest clusters con-
cluster is defined as the number of occupied sites belongingructed on the SQ lattice. The ordinate is the Szg, which is

to the cluster. Figure 1 shows the variations as a function ohormalized by the total number of sités=L2 in the system and
occupation probabilityp. The size for a specifiegp was abscissa is the occupation probability Line a is for the system
averaged for different samples with various random-numbewith L=50, b withL =100, and ¢ withL =400.
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almost the whole range of the system. Therefore the linking
mechanism gives the jumping behavior in the size variation
of the largest clusters in Fig. 2.

Here we examine how often the linking of clusters occurs
during the random-increment process of occupied sites in the
system. There are three situations for occupied sites scattered
in the system.

(1) The isolated site which is out of contact with clusters
around it. This site contributes to the increment of the total
number of clusters in the system.

(2) The contact site with a single cluster in the system.
This site is included in the cluster as a part of it and enlarge
the cluster size by 1.

"0.50 0.55 0.60 0.65 0.70 (3) The interlinking site between plural clusters. This site
P joins the clusters in the system and gives the decrement of
the total number of clusters in the system.

FIG. 2. Variation of nonaverage size of the largest cluster during We can know the situation by the following formula:
the random-increment process of occupied sites on the SQ lattice y 9 )

with L=100. The size varies stepwise. Smooth curve shows the

0.8 T T T

Smax

— 2
variation of the average size which is shown as line b in Fig. 1. g(p)=n(p)—n(p—1L"), @)
Arrow a shows the jumping gi=0.5532, b ap=0.5910, and c at ) )
p=0.5955. wheren(p) is the total number of clusters in the systenpat

This formula shows the change of the total number of clus-
shows the average size which is shown as line b in Fig. 1ters when an occupied site is introduced in the system &t
The line in Fig. 2 varies along by the average curve. It isthe site is in the situatiofil), the formula givegy(p)=1. In
almost constant fop<<0.55. It begins to increase at about the case of situatiof2), g(p) =0 is shown. If it is in the case
p=0.55 and continues to increase stepwise uptl0.65. of (3), it givesg(p)=<—1.

After this, the line is smooth fop>0.65. We simulated the random-scattering process of occupied
Why does the step increment appear in Fig. 2? Feder visites on the SQ lattice with=100 and identified the situa-
sually observed the formation process of percolation clustefions of the sites. The sites were increased one by one from
on a 2D lattice: the cluster grew with taking in other clustersp=0 to p=1. Frequency for each situation, which was av-
as a part of if 7]. Yoshidaet al. measured sizes of clusters in eraged for 10 samples with different seeds, is shown in Fig.

sintered mixture of Nb and AD; with image processing in 4. Frequency a is for the situatigh), b for (2), and c for(3).
the laboratory[8]. They observed a percolation behavior of A running average was taken for continuous 10 sites in-
Nb clusters and found their distribution became discrete aftegreased in the system. Frequency &4sl atp=0. It de-
the transition of percolation, indicating coupling of the clus- creases with increasing monotonously.
ters[8]. The coupling behavior has been observed not only in  We find the frequency b increases wighin the initial
the laboratory but also in computer simulations of the MCregionp<<0.2. It begins to saturate at aroupe=0.2 and is
method[9]: when a vacant site which is located betweenalmost constant until aboyt=0.5. Afterwards, it begins to
clusters is changed to an occupied site, then the clusters airgcrease again and saturates for 0.8. The variation of fre-
joined by the site. guency ¢ shows a bell-type shape: it increases witlmtil
Let us examine the origin of the step increment appeare@= 0.5 and after then it begins to decrease wgithThe prob-
in Fig. 2. Arrow a in it shows the jumping when an occupiedability p=0.5 giving the maximum value for ¢ corresponds
site is introduced in the sample pt=0.5532. Figure @)  to the onset probability of increment for b.
shows the shape of two clusterspat 0.5531 for the sample. Figures 1 and 2 have shown that the size of the largest
Cross marks correspond to the occupied sites belonging tdusters has drastically increased in the probability region
the clusters in the system. The lower cluster is the largesbetweenp=0.55 andp=0.65. This region is on the thresh-
cluster atp=0.5531 and the upper one is the cluster near theld p=p.=0.592746( 10] of this lattice for an infinite sys-
largest cluster. The lower cluster does not connect with théem size. The effective threshold for a finite system size
upper cluster ap=0.5531. The small dot in Fig.(8 shows L=100 is p.,(L=100)=0.58534[11] for the SQ lattice,
the occupied site introduced pt=0.5532. The site links the which is also in this region 0.55p<0.65. The probability
lower cluster to the upper one. p=0.5, at which the frequency c has the maximum value as
Arrow b in Fig. 2 shows the jumping gt=0.5910. This shown in Fig. 4, does not always coincide with the values of
jumping is caused by the linking between the upper and th¢he thresholds for this lattice.
lower clusters in Fig. &) through the “red” site introduced The variation of the total number of clusters constructed
at p=0.5910. The extended cluster @t 0.5910 spans the in the system has been examined as a functiop.offhe
system both horizontally and vertically, i.e., from the top tonumber had the maximum value pt=0.3 which is fairly
bottom sides and from the left to right sides of the system. lower than the thresholg=p, of this lattice. This can be
Arrow c in Fig. 2 shows the jumping at=0.5955. Thisis explained from the variations of the frequency in Fig. 4: the
caused by the linking of two clusters pt=0.5954. The two  frequency a intersects the frequency ¢ at ahpa0.3. This
clusters in Fig. &) are linked by the occupied site intro- probability gives the maximum number of clusters in the
duced atp=0.5955. The enlarged cluster in FigcBcovers  system.
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FIG. 3. (a) Shape of two clusters at=0.5531 during the random-increment process of occupied sites on the SQ lattide=wiih0. The
sites belonging to the clusters are shown as crosses. The small filled square shows an occupied site introduced in thepsystem at
=0.5532. The site links the lower cluster to the upper gheShape of two clusters qt=0.5909 in the process. The filled square shows
an occupied site determined at0.5910. The site links the lower cluster to the upper doeShape of two clusters gt=0.5954 in the
process. The filled square shows an occupied sife=a0.5955. The site links the two clusters in the system.

The step increment of the size of the largest cluster hawhereS;(p) is the size of the largest cluster in the system at
appeared in Fig. 2. Here we examined the variation of thep, S;(p—1/L%) and S]-(p—llLZ) are sizes of two clusters
step width as a function gf. Figure 5 shows the variation of which are joined by an occupied site @t This shows the
the vertical widthAS averaged for 100 different samples magnification rates of mass for linking clustérandj. This
with L=100: the width was obtained when the largest clus-s considered as a measure of mass change when the largest
ter was formed by the linking of clusters. It shows a bell-typecluster is produced by the linking of two clusters.
shape. The arrow in this figure shows the position of the For the change of spatial size of clusters, we define the
thresholdp=p. of this lattice. The largest width is found to radius ratiosu, as follows:
be on the threshold.

Here we examine the origin of the fractal dimensionalities — _ 17 2 —i
D=1.896 forp=p, andD =1.56 forp<p, in terms of the ma(Prdp= 15, - (k=1)), ®
linking mechanism of clusters. First we define mass ratips

of clusters as follows: wherer(p) is the radius of the largest cluster pf and

ri(p—1/L? andr;(p—1/1L?) are radii of two clusters just
before linking. The radius of a cluster with sigés obtained
Ne=S1(P)/S(p—11L?),  (k=i,]), (2 from[3,12
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FIG. 4. Variations of frequency of each situation for occupied
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sites scattered at random in the system. These are drawn as a func- |, 6. Distribution of local dimensionalitied, of clusters de-

tion of p. Variation a is for the situatiofi), b for (2), and c for(3).

rZZZ |ri—ro|2/s=2 E |ri—r;|?/2s?, (4)
i i

wherer; andr; are positions of andj sites belonging to the
cluster, and is the central position of the cluster given by

ro=z ri/s.

©)

The ratiosu, show the magnification rates of radii for link-

fined as formula6). This is obtained from the random-increment
process of occupied sites on the SQ lattice frpm0.5500 top
=0.6500. The arrow shows the position of the fractal dimensional-
ity D= %:1.896 of percolation clusters gt=p. on 2D lattices.

largest clusters were formed by the linking of two clusters in
the system. The values were evaluated for the clusters with
size S,(p—1/L%)>1 which gave finite radius,(p—1/L?)
>0 for the clusters just before linking.

Distribution of the local dimensionalitied, is shown in
Fig. 6 as a histogram. It was obtained from 100 different
samples for the system. The histogram is drawn for the range

ing clusters andj. This is a measure of radius change whenpetweenD,=0 andD,=4 with meshAD,=0.1. The shape

the largest cluster is formed by the linking of two clusters.
By use of these ratioa, and u,, we define the local
dimensionalitiedD, as follows:

Di=In(No/In(y)  (K=1,j). (6)

When two clusters andj are linked, the two valueB, and
D; are obtained with this formula.

We simulated a random-increment process of occupiefﬂ)

sites fromp=0.5500 top=0.6500 for the SQ lattice with
L=100. This range has given the extensive linking of clus
ters as shown in Fig. 2. We obtained the valDgswhen the
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FIG. 5. Variation of step widtlA Sin size change of the largest
clusters as a function gb. The width A S is normalized byN
=L2. The arrow shows the position of the threshpld p, for the
SQ lattice.

of it is bell type: the highest peak is for the range between
D=1.8 andD,=1.9. The arrow in this figure shows the
position of fractal dimensionalitp = 3 =1.896 of percola-
tion clusters on 2D lattices. The peak position of the histo-
gram coincides with the position of the arrow. This shows
that the linking mechanism elucidates the origin of the fractal
dimensionalityD =1.896 for percolation clusters at=p..

The dimensionality of clusters has been known to be
=1.56 for the noncritical regiomp<p. [3]. Here let us
examine whether or not the dimensionaliy=1.56 can be

explained by the linking mechanism of clusters. We simu-
lated the random-increment process of occupied sites from
p=0.4000 top=0.5000 for the SQ lattice with=100. This
probability range is near the probabilip~=0.5 at which the
maximum value for the frequency ¢ has appeared in Fig. 4.
The distribution oD, is shown as a histogram in Fig. 7. The
highest peak is for the range betweén=1.5 and D,
=1.6. The arrow shows the position of the dimensionality
D=1.56 of clusters fop<p.. The arrow is on the highest
peak of the histogram. This indicates that the linking mecha-
nism explains the origin of the fractal dimensionaliBy
=1.56 forp<p..

In the last part of this paper, we present some discussions.
Figure 6 has shown that the distribution of the local dimen-
sionalitiesD, has the highest peak on the theoretically pre-
dicted valueD=3%=1.896 for percolation clusters at the
thresholdp=p.. The distribution has been examined for the
SQ lattice withL=100. Here we find that the system size
does not affect the shape of the distribution. We simulated
the random-increment process of occupied sites on the SQ
lattice with L=200: the sites were increased at random one
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0.3 . . . sionalitiesD, when the largest cluster was formed by linking
of two clusters in the system. There are the other possibility
for clusters connected, i.e., linking of three clustdr8) and
of four clusters [4). We examined how often the linking of
02 F T clusters occurred with the mechanismL& and ofL4. Fig-
l ure 6 showed the distribution of the dimensionalitieg
when two clusters were linked. It was obtained from 100
different samples for the probability range between
otr 1 =0.5500 andp=0.6500. The linking event for this figure
was 7641 times. On the other hand, the total number of link-
ing with L3 and withL4 was found to be only three times.
00 . . This shows the formation of the largest cluster is rare from
0.0 10 20 3.0 4.0 the linking of three clusters and of four clusters.
D« We have clarified that the linking mechanism of clusters
gives an interpretation for the origin of the fractal dimension-
FIG. 7. Distribution of local dimensionalitie3, of clusters de-  gjities of percolation networks on 2D lattices. This is valid
fined as formula6). This is obtained from the random-increment for the other dimensional lattices. Here the distributions of
process of occupied sites on the SQ lattice frpm0.4000 top D, were examined for a simple cubic lattice witk=30. The
_:0.5000. The arrow shows the position o_f the fractal dimensionalhigheSt peak fop=p. was found to be located near the
ity D=1.56 of clusters fop<p. on 2D lattices. valueD =2.5 which is the fractal dimensionality of percola-
tion clusters on 3D lattices. The highest peak et p. ap-
by one fromp=0.5500 top=0.6500 on the lattice. The peared near the value@=2.0 which is the dimensionality of
distribution showed a bell-type shape. The highest peak foBD clusters forp<p.. This shows that the linking mecha-
L =200 was located on the valuiz=1.896. nism characterizes the fractal-growth process of networks
In Fig. 6, we examined the distribution of the local dimen- not only on 2D lattices but also on 3D lattices.
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