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Networking process and fractal dimensionality in percolation

Makoto S. Watanabe
Faculty of Liberal Arts, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102, Japan

~Received 16 January 1998!

The growth mechanism is studied for percolation networks on a square lattice by means of a Monte Carlo
technique. The mechanism near the thresholdp5pc is accompanied with the extensive linking of clusters
during the random-increment process of occupied sites on the lattice. Local dimensionality is defined from the
magnification rates of linking clusters. The linking mechanism characterizes the process for fractal growth in
percolation.@S1063-651X~98!00607-2#

PACS number~s!: 05.70.Fh, 64.60.Ak
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Since the concept of ‘‘fractal’’ was established, geome
cal features in nature have been described with it@1#. In the
study of fractals, computer simulations have presente
number of realistic models of structures@2#. Percolation clus-
ters simulated with the Monte Carlo~MC! technique have
been known to be one of the typical models of the struct
with fractal geometry@3#. The dimensionalities on two
dimensional~2D! lattices have beenD5 91

48 51.896 for clus-
ters at the thresholdp5pc and D51.56 for clusters in the
noncritical regionp,pc @3#.

In order to analyze the detailed structure of percolat
clusters, Stanley and Coniglio proposed the ‘‘link-nod
blob’’ model @4,5#: links are defined as one-dimension
chains, nodes as their crossing points, and blobs as con
tion chains with two or more junctions between two poin
Bonds in the clusters have been classified into three p
‘‘red’’ is a singly joined backbone bond, ‘‘blue’’ a multiply
joined one, and ‘‘yellow’’ a dangling end@6#. This model
has been widely used to study fine structure of the clust

The purpose of this paper is to present an interpreta
for the origin of the above dimensionalities. We examine
growth process of the clusters on a square~SQ! lattice by
means of the MC simulation. The interlinking site betwe
two clusters, which means the ‘‘red’’ bond, plays an ess
tial role in understanding the formation mechanism of frac
networks with the dimensionalities.

First an array of vacant sites was constructed on the la
points of the SQ lattice in 2D. Their total numberN of the
sites is N5L3L, where L is the spanning size which i
equal to the number of sites on a side of the lattice. On
array of the vacant sites, occupied sites were introduce
the system at random. The numberNp of the occupied sites
was defined asNp5N3p, wherep is the occupation prob
ability of the sites. From the occupied sites determined
random, the structure of the clusters was analyzed. Here
cluster was identified as a group of the occupied sites c
nected by nearest-neighbor bonds. This process corresp
to ‘‘site percolation.’’

Here let us examine the growth mechanism of percola
clusters on the SQ lattice. First we obtained size variation
the largest cluster constructed in the system. The size of
cluster is defined as the number of occupied sites belon
to the cluster. Figure 1 shows the variations as a function
occupation probabilityp. The size for a specifiedp was
averaged for different samples with various random-num
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seeds. Abscissa is for probabilityp and ordinate for sizeSmax

of the largest cluster. Here the sizeSmax was normalized by
N5L2. Line a in Fig. 1 is forL550, b forL5100, and c for
L5400. Line a is almost constant withSmax50 in the initial
regionp,0.4. This shows that the cluster does not grow
this region, although the number of occupied sites has b
increased in proportion top. The line begins to increas
abruptly at aboutp50.5 and continues to increase untilp
50.7, indicating the drastic growth of the cluster. The li
shows linear relation for the final regionp.0.7. Lines for
the other sizesL vary in the same manner as line a. Th
onset probability of the drastic increment increases with
creasingL.

We examine the growth process of the cluster in m
detail. Figure 1 shows the variations of average sizeSmax for
different samples. In order to know details of the grow
process of the cluster, we examined the variations of the
of the cluster without averaging. First we determined
random-number seed for a sample and increased occu
sites at random one by one in the sample: the sites w
determined by random-number series with the seed. Figu
shows the result for a sample with a random-number se
The system size was chosen to beL5100. Line for the
sample varies stepwise in this figure. Smooth curve in

FIG. 1. Variations of average size of the largest clusters c
structed on the SQ lattice. The ordinate is the sizeSmax which is
normalized by the total number of sitesN5L2 in the system and
abscissa is the occupation probabilityp. Line a is for the system
with L550, b withL5100, and c withL5400.
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PRE 58 155NETWORKING PROCESS AND FRACTAL . . .
shows the average size which is shown as line b in Fig
The line in Fig. 2 varies along by the average curve. It
almost constant forp,0.55. It begins to increase at abo
p50.55 and continues to increase stepwise untilp50.65.
After this, the line is smooth forp.0.65.

Why does the step increment appear in Fig. 2? Feder
sually observed the formation process of percolation clu
on a 2D lattice: the cluster grew with taking in other cluste
as a part of it@7#. Yoshidaet al.measured sizes of clusters
sintered mixture of Nb and Al2O3 with image processing in
the laboratory@8#. They observed a percolation behavior
Nb clusters and found their distribution became discrete a
the transition of percolation, indicating coupling of the clu
ters@8#. The coupling behavior has been observed not onl
the laboratory but also in computer simulations of the M
method @9#: when a vacant site which is located betwe
clusters is changed to an occupied site, then the clusters
joined by the site.

Let us examine the origin of the step increment appea
in Fig. 2. Arrow a in it shows the jumping when an occupi
site is introduced in the sample atp50.5532. Figure 3~a!
shows the shape of two clusters atp50.5531 for the sample
Cross marks correspond to the occupied sites belongin
the clusters in the system. The lower cluster is the larg
cluster atp50.5531 and the upper one is the cluster near
largest cluster. The lower cluster does not connect with
upper cluster atp50.5531. The small dot in Fig. 3~a! shows
the occupied site introduced atp50.5532. The site links the
lower cluster to the upper one.

Arrow b in Fig. 2 shows the jumping atp50.5910. This
jumping is caused by the linking between the upper and
lower clusters in Fig. 3~b! through the ‘‘red’’ site introduced
at p50.5910. The extended cluster atp50.5910 spans the
system both horizontally and vertically, i.e., from the top
bottom sides and from the left to right sides of the syste

Arrow c in Fig. 2 shows the jumping atp50.5955. This is
caused by the linking of two clusters atp50.5954. The two
clusters in Fig. 3~c! are linked by the occupied site intro
duced atp50.5955. The enlarged cluster in Fig. 3~c! covers

FIG. 2. Variation of nonaverage size of the largest cluster dur
the random-increment process of occupied sites on the SQ la
with L5100. The size varies stepwise. Smooth curve shows
variation of the average size which is shown as line b in Fig.
Arrow a shows the jumping atp50.5532, b atp50.5910, and c at
p50.5955.
1.
s

i-
er
s

er
-
n

are

d

to
st
e
e

e

.

almost the whole range of the system. Therefore the link
mechanism gives the jumping behavior in the size variat
of the largest clusters in Fig. 2.

Here we examine how often the linking of clusters occu
during the random-increment process of occupied sites in
system. There are three situations for occupied sites scatt
in the system.

~1! The isolated site which is out of contact with cluste
around it. This site contributes to the increment of the to
number of clusters in the system.

~2! The contact site with a single cluster in the syste
This site is included in the cluster as a part of it and enla
the cluster size by 1.

~3! The interlinking site between plural clusters. This s
joins the clusters in the system and gives the decremen
the total number of clusters in the system.

We can know the situation by the following formula:

g~p!5n~p!2n~p21/L2!, ~1!

wheren(p) is the total number of clusters in the system atp.
This formula shows the change of the total number of cl
ters when an occupied site is introduced in the system atp. If
the site is in the situation~1!, the formula givesg(p)51. In
the case of situation~2!, g(p)50 is shown. If it is in the case
of ~3!, it givesg(p)<21.

We simulated the random-scattering process of occup
sites on the SQ lattice withL5100 and identified the situa
tions of the sites. The sites were increased one by one f
p50 to p51. Frequency for each situation, which was a
eraged for 10 samples with different seeds, is shown in F
4. Frequency a is for the situation~1!, b for ~2!, and c for~3!.
A running average was taken for continuous 10 sites
creased in the system. Frequency a isf 51 at p50. It de-
creases with increasingp monotonously.

We find the frequency b increases withp in the initial
region p,0.2. It begins to saturate at aroundp50.2 and is
almost constant until aboutp50.5. Afterwards, it begins to
increase again and saturates forp.0.8. The variation of fre-
quency c shows a bell-type shape: it increases withp until
p50.5 and after then it begins to decrease withp. The prob-
ability p50.5 giving the maximum value for c correspond
to the onset probability of increment for b.

Figures 1 and 2 have shown that the size of the larg
clusters has drastically increased in the probability reg
betweenp50.55 andp50.65. This region is on the thresh
old p5pc50.5927460@10# of this lattice for an infinite sys-
tem size. The effective threshold for a finite system s
L5100 is pc(L5100)50.58534 @11# for the SQ lattice,
which is also in this region 0.55<p<0.65. The probability
p50.5, at which the frequency c has the maximum value
shown in Fig. 4, does not always coincide with the values
the thresholds for this lattice.

The variation of the total number of clusters construc
in the system has been examined as a function ofp. The
number had the maximum value atp50.3 which is fairly
lower than the thresholdp5pc of this lattice. This can be
explained from the variations of the frequency in Fig. 4: t
frequency a intersects the frequency c at aboutp50.3. This
probability gives the maximum number of clusters in t
system.
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FIG. 3. ~a! Shape of two clusters atp50.5531 during the random-increment process of occupied sites on the SQ lattice withL5100. The
sites belonging to the clusters are shown as crosses. The small filled square shows an occupied site introduced in the syp
50.5532. The site links the lower cluster to the upper one.~b! Shape of two clusters atp50.5909 in the process. The filled square sho
an occupied site determined atp50.5910. The site links the lower cluster to the upper one.~c! Shape of two clusters atp50.5954 in the
process. The filled square shows an occupied site atp50.5955. The site links the two clusters in the system.
ha
th
f
s

us
pe
th
o

ie

at

rgest

the

t

The step increment of the size of the largest cluster
appeared in Fig. 2. Here we examined the variation of
step width as a function ofp. Figure 5 shows the variation o
the vertical widthDS averaged for 100 different sample
with L5100: the width was obtained when the largest cl
ter was formed by the linking of clusters. It shows a bell-ty
shape. The arrow in this figure shows the position of
thresholdp5pc of this lattice. The largest width is found t
be on the threshold.

Here we examine the origin of the fractal dimensionalit
D51.896 forp5pc andD51.56 for p,pc in terms of the
linking mechanism of clusters. First we define mass ratioslk
of clusters as follows:

lk5S1~p!/Sk~p21/L2!, ~k5 i , j !, ~2!
s
e

-

e

s

whereS1(p) is the size of the largest cluster in the system
p, Si(p21/L2) and Sj (p21/L2) are sizes of two clusters
which are joined by an occupied site atp. This shows the
magnification rates of mass for linking clustersi and j . This
is considered as a measure of mass change when the la
cluster is produced by the linking of two clusters.

For the change of spatial size of clusters, we define
radius ratiosmk as follows:

mk5r 1~p!/r k~p21/L2!, ~k5 i , j !, ~3!

where r 1(p) is the radius of the largest cluster atp, and
r i(p21/L2) and r j (p21/L2) are radii of two clusters jus
before linking. The radius of a cluster with sizes is obtained
from @3,12#
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r25(
i

ur i2r0u2/s5(
i

(
j

ur i2r j u2/2s2, ~4!

wherer i andr j are positions ofi and j sites belonging to the
cluster, andr0 is the central position of the cluster given b

r05(
i

r i /s. ~5!

The ratiosmk show the magnification rates of radii for link
ing clustersi and j . This is a measure of radius change wh
the largest cluster is formed by the linking of two cluster

By use of these ratioslk and mk , we define the local
dimensionalitiesDk as follows:

Dk5 ln~lk!/ ln~mk! ~k5 i , j !. ~6!

When two clustersi and j are linked, the two valuesDi and
D j are obtained with this formula.

We simulated a random-increment process of occup
sites fromp50.5500 top50.6500 for the SQ lattice with
L5100. This range has given the extensive linking of clu
ters as shown in Fig. 2. We obtained the valuesDk when the

FIG. 4. Variations of frequency of each situation for occupi
sites scattered at random in the system. These are drawn as a
tion of p. Variation a is for the situation~1!, b for ~2!, and c for~3!.

FIG. 5. Variation of step widthD S in size change of the larges
clusters as a function ofp. The width D S is normalized byN
5L2. The arrow shows the position of the thresholdp5pc for the
SQ lattice.
d

-

largest clusters were formed by the linking of two clusters
the system. The values were evaluated for the clusters
size Sk(p21/L2).1 which gave finite radiusr k(p21/L2)
.0 for the clusters just before linking.

Distribution of the local dimensionalitiesDk is shown in
Fig. 6 as a histogram. It was obtained from 100 differe
samples for the system. The histogram is drawn for the ra
betweenDk50 andDk54 with meshDDk50.1. The shape
of it is bell type: the highest peak is for the range betwe
Dk51.8 andDk51.9. The arrow in this figure shows th
position of fractal dimensionalityD5 91

48 51.896 of percola-
tion clusters on 2D lattices. The peak position of the his
gram coincides with the position of the arrow. This sho
that the linking mechanism elucidates the origin of the frac
dimensionalityD51.896 for percolation clusters atp5pc .

The dimensionality of clusters has been known to
D51.56 for the noncritical regionp,pc @3#. Here let us
examine whether or not the dimensionalityD51.56 can be
explained by the linking mechanism of clusters. We sim
lated the random-increment process of occupied sites f
p50.4000 top50.5000 for the SQ lattice withL5100. This
probability range is near the probabilityp50.5 at which the
maximum value for the frequency c has appeared in Fig
The distribution ofDk is shown as a histogram in Fig. 7. Th
highest peak is for the range betweenDk51.5 and Dk
51.6. The arrow shows the position of the dimensiona
D51.56 of clusters forp,pc . The arrow is on the highes
peak of the histogram. This indicates that the linking mec
nism explains the origin of the fractal dimensionalityD
51.56 for p,pc .

In the last part of this paper, we present some discussi
Figure 6 has shown that the distribution of the local dime
sionalitiesDk has the highest peak on the theoretically p
dicted valueD5 91

48 51.896 for percolation clusters at th
thresholdp5pc . The distribution has been examined for th
SQ lattice withL5100. Here we find that the system siz
does not affect the shape of the distribution. We simula
the random-increment process of occupied sites on the
lattice with L5200: the sites were increased at random o

nc- FIG. 6. Distribution of local dimensionalitiesDk of clusters de-
fined as formula~6!. This is obtained from the random-increme
process of occupied sites on the SQ lattice fromp50.5500 top
50.6500. The arrow shows the position of the fractal dimension
ity D5

91
4851.896 of percolation clusters atp5pc on 2D lattices.
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158 PRE 58MAKOTO S. WATANABE
by one from p50.5500 to p50.6500 on the lattice. The
distribution showed a bell-type shape. The highest peak
L5200 was located on the valueD51.896.

In Fig. 6, we examined the distribution of the local dime

FIG. 7. Distribution of local dimensionalitiesDk of clusters de-
fined as formula~6!. This is obtained from the random-increme
process of occupied sites on the SQ lattice fromp50.4000 top
50.5000. The arrow shows the position of the fractal dimension
ity D51.56 of clusters forp,pc on 2D lattices.
ler
or

sionalitiesDk when the largest cluster was formed by linkin
of two clusters in the system. There are the other possib
for clusters connected, i.e., linking of three clusters (L3) and
of four clusters (L4). We examined how often the linking o
clusters occurred with the mechanism ofL3 and ofL4. Fig-
ure 6 showed the distribution of the dimensionalitiesDk
when two clusters were linked. It was obtained from 1
different samples for the probability range betweenp
50.5500 andp50.6500. The linking event for this figure
was 7641 times. On the other hand, the total number of li
ing with L3 and withL4 was found to be only three times
This shows the formation of the largest cluster is rare fr
the linking of three clusters and of four clusters.

We have clarified that the linking mechanism of cluste
gives an interpretation for the origin of the fractal dimensio
alities of percolation networks on 2D lattices. This is va
for the other dimensional lattices. Here the distributions
Dk were examined for a simple cubic lattice withL530. The
highest peak forp5pc was found to be located near th
valueD52.5 which is the fractal dimensionality of percola
tion clusters on 3D lattices. The highest peak forp,pc ap-
peared near the valueD52.0 which is the dimensionality o
3D clusters forp,pc . This shows that the linking mecha
nism characterizes the fractal-growth process of netwo
not only on 2D lattices but also on 3D lattices.
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